Co-authored journal articles – statistical methodology
Selected publications:
- Ojeda, F. M., M. L. Jansen, A. Thiéry, S. Blankenberg, C. Weimar, M. Schmid and A. Ziegler (2023): Calibrating machine learning approaches for probability estimation: A comprehensive comparison. Statistics in Medicine 42 (29), 5451-5478.
- Spuck, N., M. Schmid, N. Heim, U. Klarmann-Schulz, A. Hörauf and M. Berger (2023): Flexible tree-structured regression models for discrete event times. Statistics and Computing 33:20.
- Bommert, A., T. Welchowski, M. Schmid and J. Rahnenführer (2022): Benchmark of filter methods for feature selection in high-dimensional gene expression survival data. Briefings in Bioinformatics 23 (1), bbab354.
- Weinhold, L., M. Schmid, R. Mitchell, K. O. Maloney, M. N. Wright and M. Berger (2020): A random forest approach for bounded outcome variables. Journal of Computational and Graphical Statistics 29 (3), 639-658.
- Sauerbrei, W., A. Perperoglou, M. Schmid, M. Abrahamowicz, H. Becher, H. Binder, D. Dunkler, F. E. Harrell Jr, P. Royston and G. Heinze (2020): State of the art in selection of variables and functional forms in multivariable analysis – outstanding issues. Diagnostic and Prognostic Research 4:3.
- Thomas, J., A. Mayr, B. Bischl, M. Schmid, A. Smith and B. Hofner (2018): Gradient boosting for distributional regression: faster tuning and improved variable selection via noncyclical updates. Statistics and Computing 28 (3), 673-687.
- Stricker, G., A. Engelhardt, D. Schulz, M. Schmid, A. Tresch and J. Gagneur (2017): GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis. Bioinformatics 33 (15), 2258-2265.
- Möst, L., M. Schmid, F. Faschingbauer and T. Hothorn (2016): Predicting birth weight with conditionally linear transformation models. Statistical Methods in Medical Research 25 (6), 2781-2810.
- Hofner, B., M. Schmid and L. Edler (2016): Reproducible research in statistics: A review and guidelines for the Biometrical Journal. Biometrical Journal 58 (2), 416-427.
- Hothorn, T., P. Bühlmann, T. Kneib, M. Schmid and B. Hofner (2010): Model-based boosting 2.0. Journal of Machine Learning Research 11(Aug), 2109-2113.